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Week 7

0.0.0.1 Taylor’s Theorem.
Taylor’s theorem is commonly used for the evaluation of functions such as
cos(x), sin(x), exp(x), log(x)
Recap:

Taylor’s Theorem: If f(x) is n + 1 times differentiable over and open interval I

containing x then:

f(x) = f(a)+f ′(a)(x−a)+
f (2)(a)

2!
(x−a)2+

f (3)(a)
3!

(x−a)3+· · ·+f (n)(a)
n!

(x−a)n+Rn

where Rn =
f (n+1)(c)

n + 1!
(x− a)n+1 for some c between a and x.

f(a) + f ′(a)(x− a) +
f (2)(a)

2!
(x− a)2 +

f (3)(a)
3!

(x− a)3 + · · ·+ f (n)(a)
n!

(x− a)n

is a polynomial of degree n and is called the Taylor polynomial for f around a.
Rn is called the remainder term and is a measure of how good an approxima-
tion the Taylor polynomial is of the function.

If the f (n) is bounded as n →∞ then Rn → 0 as n →∞ because the denomi-
nator n + 1! becomes large much faster than |(x− a)n|.
For many important functions, including cos(x), sin(x), exp(x), log(x) this is
what happens.
In the case of cos(x), sin(x), exp(x) it is also best to choose a = 0 since we can
evaluate all the necessary derivatives at this point. Thus we use the polynomial:

f(0) + f ′(0)x +
f (2)(0)

2!
x2 +

f (3)(0)
3!

x3 + · · ·+ f (n)(a)
n!

xn to approximate these
functions.
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The Taylor polynomials in particular are:

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
for exp(x)

1− x2

2!
+

x4

4!
+ · · · ± xn

n!
for cos(x)

x− x3

3!
+

x5

5!
+ · · · ± xn

n!
for sin(x)

The following program which displays the value of the Taylor polynomial of
degree 6 around 0 for the function ex and also outputs the value of the C++
exp function is clearly too cumbersome. It would be very difficult to use a
Taylor polynomial of very high degree using this design:

#include <iostream>
#include <cmath>
#include <iomanip>
double Exp(double x)
{

return 1+x+1.0/2*x*x+1.0/(3*2)*x*x*x+1.0/(4*3*2)*x*x*x*x
+1.0/(5*4*3*2)*x*x*x*x*x+1.0/(6*5*4*3*2)*x*x*x*x*x*x;

}
using namespace std;
void main()
{

double x=1;
cout<<setprecision(30);
cout<<"Taylor poly of degree 6 ="<<Exp(x)<<endl;
cout<<"Microsoft Function value ="<<exp(x)<<endl;

}

It is clearly more efficient replace the evaluation of the Taylor polynomial with
a loop calculating a sum in the usual way. We can have something like:

double Taylor =0;
int n=6;
for(int i =0;i<=n;i++)
{

Taylor+=1.0/fact(i)*pow(x,i);
}
return Taylor;

instead of

return 1+x+1.0/2*x*x+1.0/(3*2)*x*x*x+1.0/(4*3*2)*x*x*x*x
+1.0/(5*4*3*2)*x*x*x*x*x+1.0/(6*5*4*3*2)*x*x*x*x*x*x;

if we first define a factorial function fact(i).

This will allow us to compute a Taylor polynomial of higher degrees just by
changing the value of the variable n
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The following program implements the above suggestions and leaves it open to
us to increase the degree of the Taylor polynomial just by altering the value of
the variable nin the definition of the function Exp

#include <iostream>
#include <cmath>
#include <iomanip>
int fact(int n)
{

int p=1;
for(int i=1;i<=n;i++)
{

p*=i;
}
return p;

}
double Exp(double x)
{

double Taylor =0;
int n=6;
for(int i =0;i<=n;i++)
{

Taylor+=1.0/fact(i)*pow(x,i);
}
return Taylor;

}
using namespace std;
void main()
{

double x=1;
cout<<setprecision(30);
cout<<"Taylor poly of degree 6 ="<<Exp(x)<<endl;
cout<<"Microsoft Function value ="<<exp(x)<<endl;

}

The problem with this method is that the maximum value of n that we can
use is quite small. The upper limit will be imposed by the factorial function
fact(n). This function becomes large so quickly it produces integer overflow
once n is greater than 12.

The following program produces agreement up to 15 decimal places with the
value of the Microsoft version of the exponential function.

#include <iostream>
#include <cmath>
#include <iomanip>
int fact(int n)
{
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int p=1;
for(int i=1;i<=n;i++)
{

p*=i;
}
return p;

}
double Exp(double x)
{

double Taylor =0;

for(int i =0;i<=12;i++)
{

Taylor+=1.0/fact(i)*pow(x,i);
}
return Taylor;

}
using namespace std;
void main()
{

double x=1;
cout<<setprecision(20);
cout<<"Taylor poly of degree 12 ="<<Exp(x)<<endl;
cout<<"Microsoft Function value ="<<exp(x)<<endl;

}

Using Horner’s metod to evaluate the Taylor polynomial instead produces total
agreement with the Microsoft function (at least for the value x=0.1.)

#include <iostream>
#include <cmath>
#include <iomanip>
int fact(int n)
{

int p=1;
for(int i=1;i<=n;i++)
{

p*=i;
}
return p;

}
double ExpH(double x)
{

double a[13] ;
double b[13];

for(int i =0;i<=12;i++)
{

a[i]=1.0/fact(i);
}

b[12]=a[12];
for(int k=11;k>=0;k--)
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{
b[k]=a[k]+x*b[k+1];
}

return b[0];
}
using namespace std;
void main()
{

double x=0.1;
cout<<setprecision(20);
cout<<"Taylor poly of degree 12 (Horner’s method) ="<<ExpH(x)<<endl;
cout<<"Microsoft Function value ="<<exp(x)<<endl;

}

0.1 Solving Differential Equations

We will consider only differential equations which can be written in the form:
dy

dx
= F (x, y).

Examples:

• dy

dx
= y, that is F (x, y) = y.

• dy

dx
=

√
1− y2, that is F (x, y) =

√
1− y2.

• dy

dx
=

2y

x
, that is F (x, y) =

2y

x
.


